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Abstract

Leukemia, the most common childhood cancer, has long been
recognized to occasionally run in families. The first clues about
the genetic mechanisms underlying familial leukemia emerged
in 1990 when Li-Fraumeni syndrome was linked to TP53 muta-
tions. Since this discovery, many other genes associated with
hereditary predisposition to leukemia have been identified.
Although several of these disorders also predispose individuals
to solid tumors, certain conditions exist in which individuals are
specifically at increased risk to develop myelodysplastic syn-
drome (MDS) and/or acute leukemia. The increasing identifica-
tion of affected individuals and families has raised questions
around the efficacy, timing, and optimal methods of surveil-
lance. As part of the AACR Childhood Cancer Predisposition
Workshop, an expert panel met to review the spectrum of
leukemia-predisposing conditions, with the aim to develop
consensus recommendations for surveillance for pediatric

patients. The panel recognized that for several conditions,
routine monitoring with complete blood counts and bone
marrow evaluations is essential to identify disease evolution
and enable early intervention with allogeneic hematopoietic
stem cell transplantation. However, for others, less intensive
surveillance may be considered. Because few reports describ-
ing the efficacy of surveillance exist, the recommendations
derived by this panel are based on opinion, and local expe-
rience and will need to be revised over time. The development
of registries and clinical trials is urgently needed to enhance
understanding of the natural history of the leukemia-predis-
posing conditions, such that these surveillance recommenda-
tions can be optimized to further enhance long-term outcomes.
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Introduction
Leukemia is the most common childhood malignancy,

accounting for approximately 31% of all cancers occurring in
children younger than 15 years of age and 25% of cancers

among those younger than 20 (1). Although most childhood-
onset leukemias are thought to result from sporadic somatic
genetic events, they have also been observed in individuals
in the context of an expanding array of hereditary conditions.
These conditions are caused by germline genetic changes that
impact critical cellular processes, such as DNA stability and
repair, apoptosis, cell-cycle control, intracellular signal trans-
duction, and transcriptional regulation. Most of these gene-
tic defects perturb blood cell development and contribute to
the emergence of abnormal hematopoietic clones. Although
some of the leukemia-predisposing syndromes have been rec-
ognized for decades [e.g., Li-Fraumeni syndrome (LFS) and
familial platelet disorder with associated myeloid malignancy
(FPD/AMM)], many have only recently been discovered [e.g.,
ETV6-associated predisposition to hematopoietic malignancies
(also known as thrombocytopenia 5; THC5)]. As a result, for
many of these predisposition syndromes, the physical and
clinical manifestations, laboratory features, leukemia types,
and age-specific leukemia risks remain poorly defined. This
incomplete understanding has led to a lack of consensus
regarding the justification, utility, methods, and timing of sur-
veillance for children affected by these syndromes.

To facilitate consensus recommendations for leukemia surveil-
lance in children and young adults, a panel of pediatric hematol-
ogists-oncologists, geneticists, and genetic counselors met to
review this issue as part of the AACR Childhood Cancer Predis-
position Workshop. This article will highlight some of the syn-
dromes that were discussed and the recommendations for sur-
veillance that were developed. Because of space limitations, this
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article does not include specific syndromes such as those associ-
ated with germline ANKRD26 and DDX41 mutations, for which
there are currently no published reports of leukemia or myelo-
dysplastic syndrome (MDS) in affected children. For a more
comprehensive description of the leukemia-predisposing condi-
tions, the readers are referred to Table 1 and several excellent recent
reviews (2–7), some of which describe management suggestions
for affected children (3) and adults (7). For recommendations
regarding surveillance for solid tumors in those syndromes in
which leukemia occurs among a spectrum of other cancers, see
other articles in this CCR Pediatric Oncology Series (8–11).

The Leukemia Predisposition Syndromes
Syndromes in which leukemia occurs among a spectrum of
other cancers
LFS (OMIM #151623). LFS is an autosomal dominant cancer
predisposition syndrome caused by germline mutations in the
TP53 gene, which encodes the critical TP53 tumor suppressor
protein. LFS is characterized by a high risk for a number of tumor
types, including acute leukemia (9, 12). Indeed, leukemiawas one
of the defining cancers of LFS in its original descriptions and

accounts for 3% to 5%of all LFS cancers (12, 13). The relative risk
of leukemia in individuals with LFS is estimated to be 6-fold
higher than the general population, developing predominantly in
TP53mutation carriers less than 45 years old (14). The leukemias
occurring in affected children tend to be low-hypodiploid acute
lymphoblastic leukemia (ALL), most commonly of B-cell origin,
although other leukemia subtypes and therapy-associated leuke-
mias have also been reported (15). Low-hypodiploid ALL is
defined by leukemia cells containing 32 to 39 chromosomes;
remarkably, up to 40% of children with low-hypodiploid B-ALL
harbor germline TP53 mutations (16). Childhood hypodiploid
ALL is associated with a poor prognosis, and allogeneic hemato-
poietic stem cell transplantation (allo-HSCT) is often recom-
mended, particularly for those with minimal residual disease
after completion of induction (17). Thus, a diagnosis of low-
hypodiploid ALL in a child should trigger genetic counseling and
consideration of testing for LFS, as the result may influence
therapeutic decision making and donor choice. For example, if
a matched related HSCT is to be used, relatives who test negative
for the familial TP53mutation would be the preferred donors. In
addition, knowing the germline TP53 mutation status of the
patient may be a consideration in determining pretransplant

Table 1. Syndromes predisposing to childhood-onset acute leukemia or BMF/MDS

Gene (syndrome)
Inheritance
(OMIM#)

Hematopoietic
malignancies Associated manifestations

TP53 (Li-Fraumeni) AD (151623) Low hypodiploid B-ALL
(tMDS/AML)

High risk of other cancers (9)

PAX5 (susceptibility to ALL 3) AD (615545) B-ALL
CEBPA (CEBPA-associated
predisposition to AML)

AD (601626) AML

ETV6 (thrombocytopenia, type 5) AD (616216) B-ALL (MDS, AML, MM) Thrombocytopenia
RUNX1 (FPD/AMM) AD (601399) AML (T-ALL) Thrombocytopenia
MLH1, MSH2, MSH6, PMS2, EPCAM
(mismatch repair cancer
syndrome)

AR (276300) NHL (T-ALL, B-ALL,
AML)

Parents at risk for colon cancer (10)

Down syndrome/trisomy 21 Sporadic (190685) ALL, AML Multisystem
BLM (Bloom syndrome) AR (210900) NHL (AML, MDS, ALL) Short stature, photosensitivity, immunodeficiency, other cancers (11)
NBN (Nijmegen breakage syndrome) AR (251260) NHL (T-ALL) Cerebellar ataxia, skeletal abnormalities, immunodeficiency, other

cancers (11)
ATM (ataxia-telangiectasia) AR (208900) T-ALL (NHL, HL, AML) Cerebellar ataxia, immunodeficiency, ocular telangiectasias (11)
NF1, PTPN11, CBL, others
(RAS-activating syndromes)

AD (162200, 163950,
613563)

JMML (tMPN, AML,
MDS)

Cafe au lait spots, Lisch nodules, neurofibromas, schwannomas,
brain tumors (NF1); dysmorphic facies, congenital heart
anomalies, short stature, cryptorchidism (PTPN11; ref. 8)

FANCA-E, BRCA, RAD51D, others
(Fanconi anemia)

AD, AR, XLR (607139,
613899)

AML (MDS, ALL) Short stature, skeletal anomalies, other malformations, head and
neck cancer, BMF (11)

TERT, TERC, DKC1, others
(dyskeratosis congenita)

AD, AR, XLR
(305000)

AML (MDS)a Nail dystrophy, lacy skin pigmentation, oral leukoplakia, BMF,
pulmonary fibrosis, hepatic fibrosis, head and neck cancer (11)

ELANE, HAX1, others (severe
congenital neutropenia)

AD, AR, XLR (202700,
605998)

AML (MDS) Neutropenia, recurrent infections, neurocognitive abnormalities

RPS19, RPL5, RPL11, others
(Diamond–Blackfan anemia)

AD, AR (603474) MDS (AML)a Macrocytic anemia, short stature, congenital anomalies

SBDS (Shwachman–Diamond
syndrome)

AR (260400) MDS (AML) Short stature, pancreatic insufficiency, BMF

GATA2 AD (601626, 614172) MDS (AML) Immunodeficiency, lymphedema, deafness, hypertelorism,
hydrocele, other congenital anomalies

Monosomy 7 AR (252270) MDS (AML)
SAMD9 (MIRAGE syndrome) AD (617053) MDS Adrenal hypoplasia, severe infections, developmental delay,

chronic diarrhea, thrombocytopenia, anemia
SAMD9L (ataxia-pancytopenia
syndrome)

AD (159550) MDS, AML Ataxia, BMF

Abbreviations: AD, autosomal dominant; AML, acute myeloid leukemia; AR, autosomal recessive; B-ALL, B-cell acute lymphoblastic leukemia; BMF, bone marrow
failure; HL, Hodgkin lymphoma; JMML, juvenile myelomonocytic leukemia; MIRAGE, myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital
phenotypes, and enteropathy; MM, multiple myeloma; NHL, non-Hodgkin lymphoma; T-ALL, T-cell acute lymphoblastic leukemia; tMDS, therapy-associated
myelodysplastic syndrome; tMPN, transient myeloproliferative disorder; XLR, X-linked recessive.
aThe risk for childhood MDS/AML in dyskeratosis congenita and Diamond–Blackfan anemia remains to be defined.
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conditioning regimens, particularly with respect to use of total
body irradiation (9). Strategies for tumor surveillance have been
described for LFS (7, 12, 18), but their impact on improving
outcomes for those who develop leukemia remains unknown.

Constitutional mismatch repair deficiency (OMIM #276300). Con-
stitutional mismatch repair deficiency (CMMRD; also known as
mismatch repair cancer syndrome or bi-allelic mismatch repair
deficiency) is a rare, autosomal recessive syndrome caused by
biallelic mutations in the genes encoding the mismatch repair
proteins, including MLH1, MSH2, MSH6, PMS2, and rarely 30

deletions in EPCAM. Heterozygous alterations in these genes
cause Lynch syndrome, an autosomal dominant disorder with
a population prevalence of 1:400 (10, 19). In contrast to Lynch
syndrome, which primarily predisposes to adult-onset cancers of
the colon and endometrium, CMMRD confers a very high risk of
cancers beginning in childhood and continuing through adult-
hood (20, 21). Individuals with CMMRD are at particularly high
risk for brain, gastrointestinal, and hematopoietic cancers.
Approximately one third of affected individuals develop lympho-
ma or leukemia, with a median age at diagnosis of 6 years (range,
0.4–30 years; ref. 22). Non-Hodgkin lymphomas (NHL), com-
monly of T-cell origin, are the most frequently reported hemato-
poietic cancer. Individuals with CMMRD also develop acute
leukemias, including T- and B-cell ALL and acute myeloid leuke-
mia (AML). Affected individuals appear to tolerate therapy as well
as those without CMMRD, yet they are prone to relapse and
developmentof secondprimary cancers (22). Expert-based recom-
mendations for surveillance have been published (23, 24).
Although these recommendations do not strongly advocate for
intensive leukemia surveillance, they note that regularmonitoring
may add to our knowledge of the natural history of hematopoietic
malignancies when they occur in the context of CMMRD (24).

RAS activation syndromes (neurofibromatosis 1, OMIM #162200;
Noonan syndrome OMIM #163950; Noonan-like CBL syndrome,
OMIM #613563). Several overlapping syndromes with multisys-
tem involvement, including neurofibromatosis 1 (NF1), Noonan
syndrome, and Noonan-like CBL syndrome (CBL), are character-
ized by mutations leading to activation of the RAS signaling
pathway and increased risk of leukemia. The risk is particularly
high for juvenile myelomonocytic leukemia (JMML), a disease
inextricably linked with RAS activation, as mutations in RAS
pathway genes (somatic or germline) can be found in at least
90% of cases (25). NF1 is caused by mutations in the NF1 gene
and associated with a high risk of solid tumors, including brain
tumors, peripheral nerve sheath tumors, and rhabdomyosarcoma
(8). Although less frequently encountered, patientswithNF1have
a greater than 200-fold increase in the risk for JMML, as well as
increased risk of ALL and AML (26). Noonan syndrome is caused
bymutation in one of at least seven different genes. Up to 10% of
patients with Noonan syndrome caused by mutation in PTPN11
or KRAS develop a transient myeloproliferative disease in infancy
that closely resembles JMML. Although it is generally benign and
self-resolving, it can cause significant morbidity and mortality,
and in rare patients, it can progress to frank JMML (27). Patients
with Noonan syndrome caused by mutation in PTPN11 or SOS1
are also at increased risk of B-ALL, most with high hyperdiploidy
(28). CBL syndrome is caused by germline mutations in the CBL
gene, which encodes the Casitas B-lineage lymphoma protein, an
E3 ubiquitin ligase that functions to negatively regulate intracel-

lular signaling induced by receptor tyrosine kinases (29).
Although patients with CBL syndrome are at increased risk to
develop myeloproliferation and JMML, in some patients, myelo-
proliferation regresses despite loss of heterozygosity of the CBL
locus in hematopoietic cells (27). Existing guidelines for the care
of patients with NF1 and Noonan syndrome do not advocate for
routine surveillance for leukemia in asymptomatic patients
(30, 31). There are currently no guidelines for individuals with
CBL syndrome. Recommendations from the AACR Pediatric
Cancer Working Group for surveillance for solid tumors in
children with NF1 are addressed in a companion article (8),
which is part of this CCR Pediatric Oncology Series.

Fanconi anemia (OMIM #227650 and others). Fanconi anemia is a
genetically and phenotypically diverse syndrome, characterized
by DNA damage repair defects, bone marrow failure (BMF), and
cancer predisposition. It is caused by biallelic mutations in one of
at least 19 genes involved in DNA damage repair (32). Most
patients have congenital anomalies, including short stature,
abnormal thumbs, and caf�e au lait spots, although some patients
have no physical manifestations and are only diagnosed when
presenting with cytopenias. BMF presents in childhood in most
patients (33). Patients with Fanconi anemia have a very high
relative risk of solid tumors and leukemia. Head and neck
squamous cell cancer is the most common solid tumor, with a
relative risk of about 600 in those with Fanconi anemia compared
with those without the condition, usually presenting in adult-
hood (34, 35). AML is the most common hematologic malig-
nancy, accounting for more than 80% of leukemias (35). Patients
with biallelic mutations in FANCD1/BRCA2 have the most dis-
tinctive phenotype with severe congenital anomalies and a cumu-
lative incidence of leukemia of 80% by 10 years of age and of any
malignancy of more than 90% by 7 years of age (35). Guidelines
for the management of patients with Fanconi anemia, including
leukemia surveillance, have been published and advocate for
proactive monitoring of the peripheral blood and bone marrow
for progressive BMF, MDS, and/or clonal evolution (11, 36).

Syndromes in which leukemia is the primary malignant
manifestation
Susceptibility to ALL 3 (OMIM #615545). Germline mutations in
PAX5, the gene encoding a critical B-cell transcription factor, have
recently been shown to increase the risk for precursor B-ALL. Three
unrelated families have been described thus far in which multiple
individuals carried identical missense mutations (p.G183S) affect-
ing the octopeptide domain of the encoded paired box 5 protein,
suggestive of autosomal dominant inheritance (37, 38). All indi-
viduals with leukemia who were tested were carriers of this muta-
tionanddiagnosedwitha specific subtypeofBALL characterizedby
somatic loss of the wild-type PAX5 allele, mostly by the formation
of an isochromosome 9 or dicentric rearrangements involving 9q.
Multiple PAX5mutation carriers unaffected by leukemia were also
identified, suggesting reduced penetrance, but more families are
needed to provide an accurate risk estimate. As all leukemias were
diagnosed in childhood in the reported kindreds, it has been
speculated that the risk for developing leukemia strongly decreases
after the first decade of life. No recommendations for leukemia
surveillance specific to this syndrome have been reported.

GATA2-associated predisposition to MDS/AML (OMIM #614038;
#614172). Pathogenic variants in GATA2, the gene encoding the
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GATA2 transcription factor, are related to autosomal dominant
predisposition to MDS with progression to AML (39, 40). Non-
syndromic as well as syndromic presentations have been
described, with syndromic cases showing immune deficiency in
MonoMAC syndrome (41) and lymphedema in Emberger syn-
drome (42). Most germline mutations are missense and occur in
highly conserved codons encoding a C-terminal zinc finger
domain (ZF2) required for DNA binding and involved in pro-
tein:protein interactions. Other mutations occur throughout the
five coding exons and can lead to total loss of gene function. Inone
report, up to 7%of primary pediatricMDS caseswere attributed to
germline GATA2 mutations (43). Furthermore, in adolescents
with MDS and monosomy 7, as many as 72% appear to harbor
germline GATA2mutations, and the majority of these are de novo
(43). Germline mutations in GATA2 were also associated with
trisomy 8 (43). At present, all described germline mutations
predispose individuals to MDS/AML, infectious diseases, and
cytopenias, but data suggest that only complete haploinsuffi-
ciency or loss of function of GATA2 predispose to lymphedema
(40). Human papillomavirus and Epstein–Barr virus infections
contribute to development of additional neoplasms, which also
cause significantmorbidity andmortality (40). Although there are
some clear cases of unaffected GATA2 mutation carriers, about
50% of patients present in childhood or young adulthood with
associated illnesses, including hematopoietic malignancy (40).
Somatic mutations in ASXL1 are found in the hematopoietic
tissues of 30% of individuals with germline GATA2 mutations,
and in four of five of those tested who developed chronic
myelomonocytic leukemia, suggesting that a cooperative sec-
ond "hit" is required for malignant transformation (44). To
correct hematopoietic and immunologic defects, the emerging
standard of care involves allo-HSCT from a GATA2 mutation–
negative donor, particularly for those with worsening MDS
and severe or recurrent infections. Routine evaluation of the
bone marrow for dysplasia, excess blasts, or abnormal cytoge-
netics has been advocated by some investigators, as it may
inform the timing of allo-HSCT (40).

CEBPA-associated predisposition to AML (OMIM #601626;
#116897). Familial AML due to germline mutations in CEBPA,
the gene encoding a key transcription factor involved in the
development of granulocytes from commonmyeloid progenitors
(45, 46), is an autosomal dominant condition in which AML
typically occurs earlier and more frequently than is the case in
sporadic AML. At least 45% of individuals with germline CEBPA
mutations develop AML,most commonly in the third decade, but
onset has been reported as early as the first few years of life (47,
48). Approximately 5% to 14% of all AML patients have mono-
allelic or biallelic somatic CEBPA mutations in their leukemic
cells. Among those whose leukemias exhibit biallelic mutations,
7% to 11% harbor one of these mutations in the germline (49).
Germline mutations occur most often as frameshift mutations
affecting the 50 end of the gene. Leukemias developing in the
context of CEBPA-associated predisposition to AML usually show
acquisition of somatic mutations affecting the 30 end of the
remaining CEBPA allele (47). Rarely, 30 end CEBPA mutations
have been reported as germline events in families exhibiting
incomplete leukemia penetrance (48). Individuals with germline
CEBPAmutations tolerate AML therapy, and long remissions can
be induced. Nevertheless, mutation carriers are prone to recurrent
disease, with subsequent leukemias harboring distinct somatic 30

CEBPAmutations. These data suggest that the recurrent leukemias
reflect development of second primary AML rather than relapse
(47). Because of the high rate of development of multiple AMLs
within germline CEBPA mutation carriers, allo-HSCT has been
recommended as a curative therapy (7). However, given the long
remissions between leukemia occurrences, chemotherapy-only
regimens may be appropriate.

Leukemia predisposition syndromes with associated
thrombocytopenia
Thrombocytopenia, type 5 (OMIM #616216). Thrombocytopenia,
type 5 (THC5) is an autosomal dominant syndrome of throm-
bocytopenia, red cell macrocytosis, and leukemia predisposition
that is associated with germline mutations in the gene encoding
the transcription factor ETV6 (50–53). The thrombocytopenia is
variable and generally not severe, but some patients have an
increased risk of bleeding (50, 51). Bone marrow evaluation may
reveal dysplasia and/or hypolobulated megakaryocytes. About
one fourth of ETV6 mutation carriers have been reported to
develop acute leukemia and/or MDS. Although rare cases of AML
and othermyeloidmalignancies have been described, most of the
leukemias developing in individuals with THC5 are lymphoid
with a B-cell precursor phenotype. Indeed, in a cohort of over
4,000 apparently sporadic B-ALL cases, approximately 1% were
found to harbor germline ETV6 variants thought to contribute to
leukemogenesis (52). Less often, solid tumors have been
observed, and a recent report suggests that a germline ETV6
variant is associated with increased risk of colorectal cancer as
adults (54). Therefore, it is possible that germline ETV6mutations
lead to a more general cancer predisposition, with B-ALL as the
greatest risk.

FPD/AMM (OMIM #601399). FPD/AMM is an autosomal dom-
inant condition caused by germline mutations in RUNX1, a
transcription factor and master regulator of hematopoiesis, that
increases risk for myeloid malignancies and occasionally T-ALL
(55–57). The clinical presentation varies but typically includes a
lifelong mild to moderate bleeding tendency due to quantitative
and/or functional platelet defects (58). Individuals with FPD/
AMMwho have apparently normal platelet counts and no bleed-
ing history have also been reported (55). The incidence of trans-
formation to MDS/AML in individuals with germline RUNX1
mutations is variable among families but ranges up to 40% or
more, with patients presenting at any age (reported range of 6–76
years; mean 33 years; ref. 58). The evolution to leukemia may
depend on the type of germline mutation, and recent studies
report that those exerting a dominant-negative effect have a higher
risk for leukemia development (55, 59). These dominant-negative
mutations typically disrupt the DNA-binding or transactivating
capacities of RUNX1 (60), likely deregulating expression of
hematopoietic stem and progenitor cell target genes. Transfor-
mation to AML is often associated with acquisition of a second
somatic mutation involving the remaining RUNX1 allele (61).
Additional acquired mutations involve GATA2 and CDC25C
(reported in a Japanese cohort) as well as genes encoding
signaling intermediates (FLT3, KRAS, KIT, MPL, CBL,
NOTCH1), tumor suppressors (TP53, WT1, PHF6, BCORL1),
cohesins (RAD21), splicing factors (SRSF2, SF3B1), or proteins
involved in regulating DNA methylation (TET2, DNMT3A;
refs. 62–64). In addition to germline mutations, 21q chromo-
somal deletions causing RUNX1 haploinsufficiency may lead to
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thrombocytopenia and rarely to MDS/AML (65). Chromosom-
al translocations or somatic mutations involving RUNX1 have
also been observed in sporadic ALL, AML, chronic myelomo-
nocytic leukemias, and early-stage MDS syndromes, highlight-
ing the importance of RUNX1 in leukemogenesis (66).

Recently described leukemia predisposition syndromes
Ataxia-pancytopenia syndrome (OMIM #159550) andmyelodyspla-
sia, infection, restriction of growth, adrenal hypoplasia, genital
phenotypes, and enteropathy syndrome (OMIM #617053). Ataxia-
pancytopenia syndrome (APS) and myelodysplasia, infection,
restriction of growth, adrenal hypoplasia, genital phenotypes,
and enteropathy (MIRAGE) syndrome are caused by mutations
in SAMD9L and SAMD9, respectively, likely resulting in gain of
function (67, 68). These genes are both located on chromosome
7q21.2 and have overlapping functions in the processes involved
in endosome fusion (68, 69). APS was described many years ago
as a familial syndrome associated with progressive ataxia, BMF,
andAML (70), andonly recently has it been attributed to germline
heterozygous missense mutations in SAMD9L (67). The pheno-
type is variable, with the onset of neurologic symptoms ranging
from 10 to 62 years of age and inconsistent presence of anemia
and/or thrombocytopenia, which appear not to correlate with the
severity of neurologic findings (67). AML was described in two
children with APS, one of whom had a prior history of MDS (70).
MIRAGE syndrome is a recently described multisystem disorder
identified through the study of individuals with adrenal hypo-
plasia, severe infections, developmental delay, chronic diarrhea,
pulmonary dysfunction, thrombocytopenia, and usually anemia
(68). Two of 11 patients with SAMD9 variants developed MDS.
These diseases share an association with monosomy 7, which
leads to loss of heterozygosity of themutated SAMD9L or SAMD9
genes during progression of MDS/BMF. This observation has
suggested a common pathophysiology in bone marrow dysfunc-
tion and leukemogenesis. As reported, these disorders are other-
wise quite distinct. Currently, there is no published information
discussing leukemia surveillance for these conditions.

Considerations Regarding Surveillance for
Leukemia and/or MDS

Tumor surveillance is directed at the early detection of neo-
plasms,with the overall aim tominimizemorbidity andmortality
by allowing for the prompt initiation of treatment. Surveillance is
often instituted for individuals with predisposition to solid
tumors, where early detection may enable less extensive surgical
approaches and allow for other reductions in therapy, but it can
also prove beneficial for individuals at risk for hematopoietic
cancers. However, it is important to recognize that there are
inherent differences in the natural history of acute lymphoid
versusmyeloidmalignancies (orMDS), and that these differences
may impact decisions regarding the types and frequency of
surveillance testing. For example, due to the rapid onset of acute
malignancies such as NHL, ALL, and some cases of hereditary
AML, there is limited evidence that surveillance facilitates early
detection, improves outcomes, or confers other medical benefits.
In contrast, some hereditary forms of AML, particularly those
occurring in the context of MDS or BMF syndromes (11), may be
more indolent, evolving over months to years. In children with
these conditions, it is often possible to detect progressive cyto-
penias, bone marrow dysplasia, and the emergence of abnormal

clones exhibiting specific cytogenetic abnormalities or somatic
mutations that are harbingers of eventual leukemia. For some of
these children, such as those with GATA2-associated predisposi-
tion to MDS/AML, Fanconi anemia, Shwachman–Diamond syn-
drome (SDS), and severe congenital neutropenia (SCN), outcomes
are improved when allo-HSCT is undertaken before acute
leukemia develops (3). In these cases, preemptive treatment
with allo-HSCT may preclude the need for intensive AML
therapies, which cause prolonged cytopenias and can increase
the risk for infection, relapse, second primary neoplasms, and
even treatment-related deaths. By correcting the hematopoietic
defect, allo-HSCT can also minimize or reverse other comor-
bidities, such as immunodeficiency and pulmonary alveolar
proteinosis in GATA2-associated predisposition to MDS/AML
(71). Consensus guidelines for the management of Fanconi
anemia (36), dyskeratosis congenita (72), SDS (73), and Dia-
mond–Blackfan anemia (74) have been published. They share
features that were considered by the panel in developing the
recommendations outlined below (Table 2).

Surveillance Recommendations
1. Referral to centers with expertise in hereditary hematologic
malignancies

Consultation with, or referral to, hematologists-oncologists,
geneticists, genetic counselors, or other providers familiar with
the leukemia predisposition syndromes enables coordinated
and comprehensive care. Counseling of children and families
who have or are thought to have leukemia-predisposing syn-
dromes requires knowledge of the biology of these diseases and
the unique social and ethical issues associated with genetic
testing of children for cancer predisposition (75, 76). Such
expertise facilitates genetic testing by informing which tissue
should be analyzed (e.g., peripheral blood vs. cultured skin
fibroblasts) and the type of testing to be done (e.g., single gene,
gene panel, comprehensive gene testing, targeted familial muta-
tion testing, etc.). Expert providers may also guide referral to
appropriate specialists and lead discussions with families about
recurrence risk, management of oncologic and nononcologic
features, cancer surveillance, and patient and family involve-
ment in research.

At each visit, patients should undergo a complete history and
physical examination to assess for signs and symptoms of leuke-
mia, MDS, and/or other nononcologic comorbidities. Providers
should collect and document changes in the family history,
discuss new scientific and clinical developments, and offer
patients and families the opportunity to be enrolled in new
registries or other clinical or translational research investigations.
At a minimum, patients should be seen annually; however, a
patient'smedical and/or family historyor provider preferencemay
dictate more frequent visits (see below, "Surveillance testing").

2. Education about the signs and symptoms of leukemia
Patients and family members should be provided with infor-

mation about the manifestations of leukemia and MDS, such as
progressive fatigue, pallor, fever, petechiae, bruising, splenomeg-
aly, and lymphadenopathy. They should be made aware that the
presence of these signs and symptoms should prompt a visit to a
physician for evaluation, including physical examination and
laboratory testing for possible hematologic abnormalities [e.g.,
complete blood count (CBC)].
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3. Consultation with a transplant specialist
In recognition that allo-HSCT may be a component of care,

particularly for childrenwithworseningMDSor BMF, discussions
with a transplant specialist should occur soon after a diagnosis is
established. Early HLA typing of the child, siblings, and parents
should also be considered. If the germline leukemia-predisposing
mutation is known for the patient, genetic testing of siblings and
parents should also be performed andmutation carriers excluded
as stem cell donors. Pre- andposttest genetic counseling should be
provided for family members being tested, as the results can have
far-reaching implications beyonddonor selection (77). Currently,
the role for preemptive allo-HSCT for individuals with leukemia-
predisposing syndromes is not known.

4. Surveillance testing
All patients and families should be counseled about the poten-

tial benefits and limitations of surveillance. Laboratory evalua-
tions to monitor for leukemia and MDS include the CBC and
differential, bone marrow aspiration/biopsy, and bone marrow
cytogenetics. Although surveillance can be considered for all
patients, the use and frequency of specific tests may vary depend-
ing on the (i) leukemia-predisposing condition, (ii) patient and
family preferences, (iii) availability of insurance or other financial
resources to cover the costs of testing, and (iv) differences inhealth
care approaches throughout the world.

The group agreed that surveillance via invasive or frequent
laboratory testing is most likely to benefit children at greatest risk

for MDS, or AML that occurs in the context of MDS (e.g., Fanconi
anemia, SDS, SCN, GATA2-associated predisposition to MDS/
AML, familial monosomy 7, FPD/AMM, CEBPA-associated pre-
disposition to AML), versus those at greatest risk for ALL, NHL, or
JMML (e.g., LFS, susceptibility to ALL 3, CMMRD, THC5, Down
syndrome/trisomy 21, Bloom syndrome, ataxia telangiectasia,
RASopathies). With this in mind, the recommendations below
were developed. It is important to recognize that these recom-
mendations were designed for patients who are asymptomatic
with stable hematologic parameters. At aminimum, it was agreed
that laboratory testing should be completed annually; however,
the frequency and type of testing may need to be customized
depending on a patient's specific clinical situation. Children who
have completed treatment for a primary hematopoietic malig-
nancy should be closely monitored for recurrence as one would
do for any patient regardless of the presence of an underlying
predisposition. However, due to the increased risk for second
hematopoietic malignancies and/or MDS, children with predis-
posing conditions should eventually be transitioned to longer-
term or even life-long surveillance, as outlined below.

(i) CBC. All patients should have a CBC with manual differential
at the initial visit. This CBC will establish a baseline for future
comparison. Of particular importance within the CBC are (i)
examination for leukemic blasts or dysplastic changes; (ii) enu-
meration of the platelet count for those at risk for thrombocyto-
penia; and (iii) examination of the MCV, because macrocytosis

Table 2. Recommended surveillance for children with predisposition to leukemia or MDS

At diagnosis At follow-upa

Genetic counseling/testing of patient and other family members Patient counseling and education
* Review recurrence risks
* Discuss reproductive/family planning for children reaching adolescence or

young adulthood
* Review leukemia signs and symptoms
* Discuss advances in the field

Medical history
* Prior cytopenias, bleeding history, nononcologic manifestations

Interval medical history

Family history
* Review and document types of cancer and leukemia, ages at cancer or

leukemia onset
* Include history of antecedent cytopenias and/or bleeding

Update family history
* Review and document any new individuals with cancer or leukemia
* Document types of cancer and leukemia, ages at cancer or leukemia onset

Physical examination
* Signs of leukemia, lymphoma
* Other syndrome specific findings, including signs of solid tumors

Physical examinationCBC
* Manual differential
* Reticulocyte count
* Blood smear with morphology

CBCb

Bone marrow evaluation
* Aspirate and biopsy
* Morphology
* Cytogenetics

Bone marrow evaluationc

* Aspirate � biopsy
* Morphology
* Cytogenetics

Patient/family education about signs and symptoms of cancer, including
leukemia

Discuss enrollment in registries or other research studies

HSCT consultation
* Consider HLA typing and genetic testing of potential familial donors

Discuss enrollment in registries or other research studies

Abbreviation: CBC, complete blood count.
aThe interval between visits should be no more than 12 months in asymptomatic patients at lower risk of developing MDS/AML. More frequent visits (perhaps every
3–6 months) are recommended for those with higher risk of MDS/AML. The development or worsening of cytopenias or other concerning signs or symptoms may
necessitate more frequent visits.
bCBC should be considered at least annually in thosewith normal blood counts or stable single cytopenias (see text for exceptions). Initially, for thosewith higher risk
of MDS/AML, CBC evaluations every 3 to 4 months are suggested to determine the trajectory of blood counts. If the CBC is stable, this interval can be lengthened.
Regardless of the genetic condition, if the CBC and/or differential worsen or become abnormal, they should be repeated within 2 to 4 weeks and/or a bone marrow
examination should be performed.
cAnnual clinical bonemarrowevaluation is recommended for those at higher risk ofMDS/AML, evenwith stable blood counts. Clinical bonemarrowevaluationmaybe
omitted in asymptomatic children with stable blood counts and lower risk of MDS/AML (e.g., LFS, Down syndrome/trisomy 21, PAX5, ETV6, CMMRD, Bloom
syndrome, ataxia-telangiectasia, RASopathies, dyskeratosis congenita, Diamond–Blackfan anemia). For these latter patients, consideration could be given to
completing a bone marrow evaluation for research purposes to better understand the natural history of these disorders. More frequent clinical bone marrow
evaluations are recommended for those with new or worsening cytopenias.
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can be a manifestation of MDS. Given the paucity of data to
support theutility of frequentCBCs as a screening tool for ALL and
NHL, it was suggested that follow-up CBC testing be minimized
for children whose underlying genetic condition places them at
highest risk for acute lymphoid malignancies. Rather, these chil-
dren could undergo follow-up CBCs only when there are symp-
toms or physical examination findings concerning for these
malignancies.

In contrast, for children at high risk for MDS/AML, routine
follow-up CBCs should be used to monitor for disease progres-
sion. For the highest risk diseases, such as Fanconi anemia, CBCs
should be performed every 3 to 4months, even if counts are stable
(36). For other conditions, CBCs should be performed more
frequently initially (perhaps every 3–4 months), with the length
of time between evaluations lengthening to every 6 to 12 months
if the blood counts remain stable. Regardless of the underlying
genetic condition, if a patient develops cytopenia of one or more
lineages, the CBC should be repeated within 2 to 4 weeks. For
those whose CBCworsens or remains abnormal over two ormore
measurements, a bone marrow aspirate/biopsy with cytogenetics
should be performed.

(ii) Bone marrow aspiration and biopsy with cytogenetic analysis. A
baseline bone marrow aspirate and biopsy with cytogenetic
analysis should be considered for all patients, particularly those
with significant abnormalities on the CBC at diagnosis and those
at greatest risk for MDS. Although the group did not recommend
routine follow-up bone marrow aspirate or biopsy for children at
greatest risk for ALL or NHL, annual follow-up bone marrow
evaluation with cytogenetic analysis should be offered for chil-
dren at greatest risk for BMF and/or MDS/AML. In these children,
the bone marrow should be examined for changes in cellularity;
worsening dysplasia; evidence of leukemic blasts; evolution of
hematopoietic clones with abnormal, high-risk cytogenetics (e.g.,
monosomy 7); or development of high-risk somatic mutations.
Although the risk of disease progression associated with newly

acquired somatic mutations has yet to be defined, if these or any
of the other features noted are present, or if the patient develops
a progressive transfusion requirement, allo-HSCT should be
considered.

Conclusions
Despite examination of the best scientific evidence available,

the working group found that much of the published data
regarding surveillance for individuals with hereditary predispo-
sition to leukemia are currently found in small case series or are
based on provider and/or family preference. Nonetheless, the
potential benefits and limitations of surveillance were thoroughly
considered, and the above recommendations developed. As diag-
nostic technologies improve and our understanding of the leu-
kemia risks in these conditions increases, the recommendations
presented above will require updating. Similarly, as more is
learned about the prognostic implications of clonal hemato-
poiesis and acquired somatic mutations, it is likely that these
parameters will be incorporated into future protocols. Creation
of research networks and registries for patients with leukemia-
predisposing conditions will enable collection of the critical
data needed to inform development of improved surveillance
and treatment guidelines for children and adults with these
complex conditions.
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